A Comprehensive Review of Tick-Born Blood Protozoan Disease in Cattle: Babesiosis and Vaccination

Zia ul Rehman Khalid1##*, Sarfraz ur Rahman1###, Muhammad Zubair Munir2, Abdul Jabar2, Irtaza Hussain3

1Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
2Livestock and Dairy Development Punjab, Lahore, 54000, Pakistan
3Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University Multan, Pakistan

Abstract
Babesiosis is a tick-borne blood protozoan cattle disease caused by the genus Babesia worldwide and in tropical and subtropical regions. It is mainly caused by Babesia bovis and Babesia bigemina in cattle. When merozoites enter the erythrocyte, the surface coat of B. bigemina produces many merozoite surface antigens. This study is a comprehensive review of the “Tick-Borne Blood Protozoan Cattle Disease: Babesiosis and Vaccination” survey. There is a need to develop effective vaccines to control bovine babesiosis (BB) under field conditions because of the development of drug resistance against it. B. bigemina live-attenuated vaccine is available in the form of infected red blood cells (RBCs) in Australia and Israel, which has the danger of disseminating exotic DNA to other countries. A recombinant protein-based vaccine is a good choice to be developed, but very few immunogens have been explored yet to launch vaccination against B. bigemina. It is concluded from this study that secretory proteins were characterized, and the 65 kDa protein was found to be immunogenic. Major surface protein (gp45) was found to be antigenic and immunogenic when sera samples of infected and vaccinated calves were screened. The multipitope-based protein rec-gpME was expressed, and the calves were vaccinated. The vaccinated calves had higher humoral and CTL responses. This rec-gpME could be a potential vaccine candidate against the B. bigemina infection. This rec-gpME would be tested on cattle under field conditions in Pakistan in the future.

Keywords: Babesia bigemina, rec-gp45, Babesiosis, ELISA, Livestock

Received: November 9, 2023, Accepted: December 21, 2023, ePublished: December 29, 2023
and the share of agriculture in the country’s GDP was 19.8% during 2021-2022, and the livestock share was 53.2% in agriculture. The total livestock population in Pakistan is about 238.1 million, which includes buffaloes, cattle, camels, sheep, goats, mules, horses, and donkeys. Small-scale dairy farmers in Pakistan depend on livestock to meet their nutritional needs (7). Small and large dairy farmers in the country raise buffaloes and cattle. The estimated livestock population of buffaloes and cattle in Pakistan is 38.8 million and 46.1 million, respectively. Pakistan is ranked 4th among the largest milk-producing countries in the world (8).

Losses Due to Ticks and Tick-Borne Diseases

The losses due to ticks and tick-borne diseases (TTBDs) could be categorized as direct losses in production and animal losses, whereas indirect losses include therapeutic and prophylactic costs. If TTBDs are re-established in the cattle industry in the USA, then there would be an annual loss of about US$ 500 million. In Queensland and New South Wales (NSW), US$ 7.8 million per annum was spent on the control of TTBDs. In Sweden, per annum losses reported due to *B. divergens* were US$ 2.5 million (9). The economic losses due to *R. microplus* were estimated at US$ 41 million, according to Brazil’s Resource Economic and Australian Bureau of Agriculture in 1994 (10). Based on geographical zones, climatic changes, and natural resources, Pakistan is distributed into different agroecological regions, which affect spatiotemporal patterns of animal diseases. Pakistan falls in the subtropical zone (30° N, 70° E) within South Asia and offers the optimum environmental conditions for developing tick species that transmit various pathogens to the host. About 80% of the world’s total cattle population is at risk of TTBDs that cause substantial economic losses due to reduced milk and meat production in tropical and subtropical regions. Globally, the estimated losses due to TTBDs were ~ US$ 22-30 billion annually and an annual shortfall of ~3 billion hides in cattle (11,12). Ticks are well-known vectors of animal and human pathogens. They are the second-largest group of parasites after mosquitoes in the phylum Arthropoda that affect mammals and reptiles.

Babesia

The livestock sector is of substantial socio-economic importance globally because of the production of meat, milk, hide, bones, and hooves. Babes discovered, for the first time, piroplasm in the blood of infected cattle (13). *Babesia* species are widespread worldwide, adversely affecting public health and the livestock sector’s economic status (14). Genus *Babesia* (Apicomplexa; Piroplasmida; Babesiidae) is a protozoal tick-borne parasite that causes a severe disease in livestock and wild animals known as babesiosis. The disease poses a serious challenge to both the farm economy and animal health. It causes severe hemoglobinuria, anemia, icterus, and ultimate death (15). More than 100 species of babesia have been discovered; out of a hundred, only 18 are essential to animals (16). The disease is spread biologically through Ixodid ticks (17). Babesiosis is transmitted through the saliva of a one-host-tick vector (*Rhipicephalus* spp.) into the host’s bloodstream. It is also spread through contaminated syringes, needles, surgical instruments, and blood transfusions (18). Babesia species, their vectors, and their distribution are listed in Table 1 (19).

Bovine Babesiosis

The most common species of Babesia infecting cattle are *B. bigemina* and *B. bovis*. Bovine babesiosis (BB) is frequently caused by *B. bigemina*, the most prevalent species, and transmitted by *R. microplus*, causing substantial economic losses in the dairy sector (20). *B. bigemina* has economic importance in livestock due to the enormous losses caused by this parasite in tropical and subtropical regions. It has been shown that this parasite affects a wide range of cattle breeds that are sensitive to this infection. Its clinical symptoms vary from region to region as the geographic area varies (21). The significant economic impact on livestock sectors was reported in tropical and sub-tropical regions. *B. bigemina* was less virulent in Australia, while in Africa, it was the most pathogenic parasite (22). Cattle with infected erythrocytes with *B. bigemina* develop severe clinical signs like hyperthermia, jaundice, anemia, and hemoglobinuria. The main clinical sign observed in infected calves with babesia infection was anemia, especially hemolytic anemia due to the destruction of red blood cells (RBCs). The main factor involved in the destruction of RBCs is the combat of macrophages in removing the pathogen from the body in babesiosis (23). The ability of infected RBCs to sequester in the capillaries of the lungs, kidneys, and brain results showed in the animal’s death (24). Cattle that have recovered from an acute infection become asymptomatic carriers and function as reservoirs for its spread. As a result, the segregation of infected and non-infected animals is inevitable and provides a valuable strategy for disease management and control measures (25).

Diagnostic Development on Bovine Babesiosis Microscopy Method

Conventionally, the microscopic method is still adopted, and a less expensive method is used to diagnose Babesia infection. The microscopic examination of infected blood through Giemsa staining is a standard method used to diagnose babesia, but its specificity and sensitivity are limited because it gives false negative results (26). Using an oil immersion lens, the thin blood film slide stained with Giemsa stain is observed at 1000X magnification.
power. The sensitivity of this approach is relatively high (27). In most cases, *B. bigemina* is usually present in venous blood samples. However, due to the very small quantity of infected erythrocytes, numerous thick and thin blood smears from a single suspected animal must be microscopically inspected. A thin smear is better for visualizing the organisms in *B. bigemina* infections. Parasites emerge as attached, small pyriform pairs with sizes ranging from 1.5 to 1.9 µm and ring stages with diameters ranging from 1.5 to 1.8 µm. As a result, light microscopy can easily present parasites (28). *B. bigemina* can be found in blood circulation as merozoite, ranging from 2.3 µm to 5 µm in length (29).

Conventional Polymerase Chain Reaction

DNA-based detection has been performed due to its reliable sensitivity and specificity than the microscopic method (30). Polymerase Chain Reaction (PCR) makes millions of copies *in vitro* from a single DNA fragment. The purpose is to detect DNA specific to *B. bigemina* infecting the host blood. The PCR test has the following advantages: it is faster, more sensitive, and precise. The assay’s specificity is confirmed by sequencing the target amplified amplicons using specific primers. The drawback of this method is the need for a technical expert to do that experiment (31).

Real-Time Polymerase Chain Reaction

In this method, fluorogenic probes release fluorescent signals during DNA amplification to analyze the parasite genome. The visibility without gel electrophoresis, quick findings, closed automated amplification, little chance of cross-contamination, and quantifiable results are the most significant advantages of this method over the conventional PCR procedure. A signal proportionate to the amount of the amplified product in real-time must be produced to detect and quantify the amount of the target DNA. This assay has many forms and makes use of fluorescence technology for detection. Compared to conventional PCR, RT-PCR uses less template material for the whole test. The equipment is expensive, and the test requires more technical ability and competence to overcome other significant drawbacks of traditional PCR (32). Additionally, the RT-PCR technique is more sensitive than the microscopic examination of Giemsa-stained blood smears and has higher specificity, repeatability, and sensitivity. These qualities encourage its application in detecting and measuring chronic infections in animals. A quantitative PCR (qPCR) created as a TaqMan test was crucial in experimental and field surveys as a duplex format for diagnosing *B. bovis* and *B. bigemina*. A fluorescence resonance energy transfer (FRET) probe was also used to identify *B. divergens* and distinguish *B. bovis*, *B. bigemina*, and other species. Compared to traditional PCR tests, the RT-PCR technique has identified Babesia infection in blood samples at 1000-fold lower quantities (33). Modern qPCR technology has improved sensitivity, specificity, and variability to provide great validity and reliability in detecting chronologically infected cattle (34).

Indirect immunological Assays

If there are extremely few parasites in the bloodstream of cattle raised in babesiosis-endemic regions, well below the threshold of direct detection methods, indirect serological techniques, including the complement fixation test (CFT), enzyme-linked immunosorbent assay (ELISA), and indirect fluorescent antibodies test (IFAT), are frequently employed. The primary drawback of these tests is that even with high antibody titers, the diseases may not always indicate parasitic infection. Also, false-negative samples can be identified even in the presence of circulating parasites (35). Serological techniques have the drawback of presenting with a cross-reaction between antibodies to *B. bovis* and *B. bigemina* and are not always reliable in detecting persistently infected animals. Overall, as antibodies typically remain for varying lengths of time, even in *B. bovis*, *B. bigemina*, or *B. divergens* in cleared

Table 1. Babesia, Hosts, Vectors, and Their Distribution

<table>
<thead>
<tr>
<th>Species</th>
<th>Vectors</th>
<th>Countries</th>
<th>Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. bigemina</td>
<td>R. microplus, R. evertsi, B. decoloratus</td>
<td>Asia, Africa, southern Europe, Australia, and America</td>
<td>Cattle</td>
</tr>
<tr>
<td>B. bovis</td>
<td>B. georgi, R. microplus, B. annulatus</td>
<td>Asia, Africa Australia, and Europe</td>
<td>Cattle, Buffalo</td>
</tr>
<tr>
<td>B. ovis</td>
<td>Rhipicephalus bursa</td>
<td>Africa, Asia</td>
<td>Goat & Sheep</td>
</tr>
<tr>
<td>B. divergens</td>
<td>Ixodes persulcatus, Ixodes ricinus</td>
<td>Ireland, United Kingdom, Spain, Northwest Europe</td>
<td>Cattle</td>
</tr>
<tr>
<td>B. major</td>
<td>Hapalaphysalis punctate</td>
<td>Africa, Asia, and Europe</td>
<td>Cattle</td>
</tr>
<tr>
<td>B. ovaeta</td>
<td>H. longicornis</td>
<td>Asia</td>
<td>Cattle</td>
</tr>
<tr>
<td>B. traudmanni</td>
<td>Boophilus spp.</td>
<td>Africa, Former USSR</td>
<td>Pig</td>
</tr>
<tr>
<td>B. motasi</td>
<td>Hapalaphysalis punctate, Rhipicephalus bursa</td>
<td>Africa, Asia, and Europe</td>
<td>Sheep & Goat</td>
</tr>
<tr>
<td>B. gibsoni</td>
<td>Rhipicephalus sanguineus, Hapalaphysalis spp.</td>
<td>America, Europe, Asia, Africa</td>
<td>Dog</td>
</tr>
<tr>
<td>B. caballi</td>
<td>H. truncatum, H. marginatus, R. evertsi evertsi</td>
<td>Asia, America, Africa, and Europe</td>
<td>Horse and Donkey</td>
</tr>
</tbody>
</table>

118 | Int J Med Parasitol Epidemiol Sci Volume 4, Number 4, 2023
animals, it is impossible to discriminate between prior exposure and current infections using serological tests. Although, in enzootic stable regions, BB lacks clinical signs throughout the year, many cattle are babesia infected. When it occurs, cattle have high antibody titers that can passively be passed to calves through the colostrum. As a result, it is falsely seropositive for Babesia infection, which seems to be seropositive (35).

Indirect Fluorescent Antibodies Test

IFAT is a widely used test that combines the stringent specificity associated with immunological approaches with the high sensitivity of fluorescence microscopy. The antibodies obtained from the cultures of B. bigemina, B. divergens, and B. bovis are used to detect the parasite. Despite its widespread usage, cross-reactivity is a key limitation for species-specific diagnosis, although IFAT is a more sensitive and specific method (20).

Enzyme-Linked Immunosorbent Assay

The crude antigens of merozoites from the infected RBCs were used to execute the ELISA. The antibodies against B. bigemina, B. bovis, and B. divergens were screened using several ELISA techniques. The capacity of serum antibodies to prevent monoclonal antibody (MAb) binding was used as the basis for a competitive enzyme-linked immunosorbent assay (cELISA). To identify positive cattle, the suppression of MAb binding to a particular epitope on the purified recombinant B. bovis RAP-1 C terminal construct by serum antibodies was evaluated (36). The method was modified to prevent cross-reactivity with bovine sera positive for B. bigemina. The B. bigemina epitope found in the RAP-1 C terminus was also used to set up the experiment. The test’s strong positive and negative predictive values, 100% and 95.9%, respectively, were seen in a region with a prevalence of 75% (37). Recently, a chimeric multi-antigen included in a fragment was synthesized by combining B-cell and T-cell epitopes of three B. bovis antigens, e.g., heat shock protein, MSA-2c, and RAP-1. This was used in an indirect ELISA, and 95.9% and 94.3% are the reported sensitivity and specificity rates, respectively. However, the sera of B. bigemina-infected calves were tested, and cross-reactivity was observed. ELISA has generally replaced IFAT because of the simplicity and objectivity of the interpretation of the serological test and the ability for automatization to handle a greater number of samples in a day (38).

Prevention and Control of Bovine Babesiosis

Prevention

Both diagnostic methods, conventional microscopic examination, and nucleic acid identification, are mainly used to diagnose BB. A few drugs, like diminazene aceturate and imidocarb, were being used for chemotherapy against babesiosis. Recently, many drugs have been developed and evaluated to control the disease (39). The rate at which parasites develop resistance against the drugs is challenging for developing and industrialized countries until and unless it is the main accessible manipulation to control the disease (40).

Control of Bovine Babesiosis

Although many vaccines are present against different pathogens, a very small number of anti-parasitic vaccines are available. Protective immunity can be induced by pre-munition against BB, developed by B. bigemina and B. bovis (41). On the other hand, live vaccines have limited adoption due to technical and biological drawbacks (42). The various commercial vaccines for BB are available on the market, as shown in Table 2.

Exo-antigens From the Supernatant of In Vitro Culture

Soluble antigens separated from the parasite’s culture medium in vitro could provide protective immunity against the parasite. The immunological assay of soluble proteins obtained from the culture medium of B. bovis revealed that MASP (micro-aerophilous stationary phase) contained three antigens. These antigens were analyzed through various assays to characterize their physicochemical and antigenic properties (50).

After obtaining washed RBCs in an in vitro culture of Babesia species maintained through the MASP culture technique, the culture’s supernatants were stored after lyophilization at 4 °C after maintaining the culture for 24 hours. These supernatants contained soluble antigens (51). Pure RBCs can be obtained by centrifugation, removing plasma and the buffy coat layer. Washing with PBS is recommended to obtain more purity (52).

RBCs obtained from the calf infected with B. bigemina were washed at 3000 × g with normal saline. The cells were lysed with cold distilled water. The lysate of the supernatant was fractionated by Sephadex columns at pH = 8.6. The elution was checked at 280 nm and 413 nm. The Sephadex contained all the antigens that were active in haemagglutination tests (53). B. bigemina-infected RBC suspension was separated. The suspension was disrupted with an oscillator rather than centrifugation. The sediment was extracted and used as a source of crude antigens (54). Antigens separated from the culture of B. bovis-infected RBCs on the membrane of RBCs and directly on the parasite membrane. These antigens are potent immunogens in the control of BB antigens (55).
Commercially Available Vaccines Against Bovine Babesiosis

<table>
<thead>
<tr>
<th>Country</th>
<th>Vaccine Name</th>
<th>Composition</th>
<th>Storage</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uruguay</td>
<td>HEMOVAC C</td>
<td>B. bigemina</td>
<td>Ultra-frozen</td>
<td>(43)</td>
</tr>
<tr>
<td></td>
<td>HEMOVACUNA/DILAVE</td>
<td>B. bovis</td>
<td>Refrigerated</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>FROZEN African Redwater Vaccine for cattle</td>
<td>B. bigemina</td>
<td>Ultra-frozen</td>
<td>(44)</td>
</tr>
<tr>
<td></td>
<td>FROZAN Asiatic Redwater Vaccine for cattle</td>
<td>B. bovis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>VACUNA CONTRA LA BABIOSIS BOVINA</td>
<td>B. bigemina</td>
<td>Ultra-frozen</td>
<td>(45)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. bovis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>ANABASAN</td>
<td>B. bigemina</td>
<td>Ultra-frozen</td>
<td>(46)</td>
</tr>
<tr>
<td>Brazil</td>
<td>EMBRAVAC/HEMOPAR</td>
<td>B. bigemina</td>
<td>Ultra-frozen</td>
<td>(47)</td>
</tr>
<tr>
<td></td>
<td>ERITROVAC N2</td>
<td>B. bovis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERITROVAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>Combavac 3 in 1 concentrate Trivalent tick fever vaccine</td>
<td>B. bigemina</td>
<td>Ultra-frozen</td>
<td>(48)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. bovis</td>
<td>Refrigerated</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>Vacuna contra la babesiosis y la Biojaja</td>
<td>B. bigemina</td>
<td>Refrigerated</td>
<td>(49)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. bovis</td>
<td>Ultra-frozen</td>
<td></td>
</tr>
</tbody>
</table>

Immunization With Recombinant Major Surface Antigens of Babesia bigemina

AMA1, glycosylphosphatidylinositol-anchored protein (gp45/55), and rhoptry-associated proteins (Rap-1) are vaccine candidates against *B. bigemina* used to immunize cattle. *B. bigeminal*’s merozoite surface antigens, like gp45, and the merozoite surface antigen of *B. bovis* played the same antigenic role (58).

The gp45 antigen activates an immune response in animals when infected with the *B. bigemina* strain. The clone JG-29 of *B. bigemina* was used to examine the molecular basis for polymorphism. gp45 was cloned and sequenced from *B. bigemina* (JG-29 strain), and then the full-length protein recognized by anti-gp45 antibodies was expressed. *Escherichia coli* strains have been used in cloning and the production of proteins. *E. coli* is among the best choices for recombinant protein growth. It has become the most popular platform for protein expression. There are multiple benefits to using *E. coli*: its fast, unparalleled growth kinetics, short replication time (approx. 20 minutes), and ability to attain high cell density cultures (59,60). It has been used in recombinant protein production (61). The swift and easy transformation of exogenous DNA in *E. coli* makes its use more common. Transformation of the plasmid into *E. coli* can be completed in 5 minutes (62) using competent cells like Top 10, BL-21, DH5α, etc. *E. coli* strains are used to clone and express recombinant proteins in suitable media (63). The gp45 and gp58 are two merozoite surface glycoproteins of *B. bigemina* having 45 kDa and 58 kDa sizes, respectively. These proteins have been expressed using strains of *E. coli*. Both have antigenic variations similar to MSA-1 and 2 of *B. bovis*. Immunization of calves with purified gp45 significantly reduced parasitemia.

A study reported using the pGEM-T vector for cloning (64) and pET28α (+) as a sub-cloning and expression vector for recombinant proteins. PCR selected positive clones after cloning into pGEM-T and then reconfirmed them using restriction analysis (64,65). Various molecules, including thrombospondin-related anonymous protein (TRAP), rhoptry associated protein-1 (RAP-1), spherical body proteins (SBPs), and AMA-1, are secreted by the apical organelles. These are potential immunogenic vaccine targets. The genetic diversity and distribution of RAP-1 and AMA-1 were examined. Sets of primers were used for each gene’s amplification. The selected PCR products underwent cloning, which was carried out into the pGEM-T vector.

In another study, the recombinant p200 protein was characterized and used in an ELISA kit to diagnose the presence of antibodies in infected sera. In the p200 protein, bovine B-cell epitopes were found with a size of 7 kDa band on SDS-PAGE, and it was proven to be a potential candidate for developing an ELISA kit to couple with the antibodies of *B. bigemina*. Other recombinant proteins, like glutathione S-transferase (GST), with a size of 26 kDa, were cloned in the PpGE XII T vector, expressed in *E. coli* and BL-21 cells, and used in ELISA coating. The recombinant proteins against different parasitic diseases have been described in Tables 3, 4, 5, and 6.

Epitope-Based Vaccine

Genetic and antigenic diversity severely hinders the development of an effective vaccine against any specific infection. Therefore, for effective design and assessment, knowledge of the diversity and polymorphism in the population is essential. Such information could also offer priceless insights into how parasites and hosts interact (71-73). New approaches to designing and manufacturing innovative epitope-based vaccinations have been made.
possible by increased bioinformatic tool expertise and advancements in recombinant DNA technology (74-76). The least immunogenic component of any antigenic determinant (epitope) can elicit a particular immune response (77-79).

Conclusions and Recommendations
It is concluded from this study that secretory proteins were characterized, and the 65 kDa protein was found to be immunogenic. Major surface protein (gp45) was found to be antigenic and immunogenic when sera samples of infected and vaccinated calves were screened. Owing to the polymorphic nature of gp45, a multi-epitope fragment containing 388 amino acids (1164 bp) was designed using bioinformatic tools. This multiepitope-based protein (rec-gpME) was expressed, the calves were inoculated, and elevated humoral and CTL responses were observed in vaccinated calves. This rec-gpME could be a potential vaccine candidate against the *B. bigemina* infection. This rec-gpME would be tested on cattle under field conditions in Pakistan in the future.

Acknowledgments
The authors thank researchers who did pioneer work in the field of livestock diseases like babesiosis.

Authors’ Contribution
Conceptualization: Zia ul Rehan Khalid.
Data curation: Zia ul Rehan Khalid, Muhammad Zubair Munir.
Investigation: Sarfraz ur Rahman, Irtaza Hussain.
Methodology: Abdul Jabar.
Resources: Abdul Jabar, Muhammad Zubair Munir.
Supervision: Zia ul Rehan Khalid.
Validation: Zia ul Rehan Khalid.
Visualization: Sarfraz ur Rahman.
Writing—original draft: Zia ul Rehan Khalid.
Writing—review & editing: Sarfraz ur Rahman.

Competing Interests
There is no conflict of interest.

Ethical Approval
Not applicable.

Table 3. Babesia Recombinant Vaccines (66)

<table>
<thead>
<tr>
<th>Vaccine Candidates</th>
<th>Species</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAG1</td>
<td>T. annulata</td>
<td>Recombinant vaccine</td>
</tr>
<tr>
<td>TAM51</td>
<td>T. parva</td>
<td>Recombinant vaccine</td>
</tr>
</tbody>
</table>

Table 4. Theileria Subunit Vaccines (67-69)

<table>
<thead>
<tr>
<th>Vaccine Candidates</th>
<th>Species</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>p67</td>
<td>T. parva</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Trypanosoma Recombinant Vaccines

<table>
<thead>
<tr>
<th>Vaccine Candidates</th>
<th>Species</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-tubulin</td>
<td>T. evansi</td>
<td>Recombinant vaccine</td>
</tr>
<tr>
<td>MAP p15</td>
<td>T. brucei</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Toxoplasma Recombinant Vaccines (70)

<table>
<thead>
<tr>
<th>Vaccine Candidates</th>
<th>Species</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAG1</td>
<td>T. gondii</td>
<td>Recombinant vaccine</td>
</tr>
<tr>
<td>MIC1 & MIC 4</td>
<td>T. gondii</td>
<td></td>
</tr>
<tr>
<td>GRA2 and GRA6</td>
<td>T. gondii</td>
<td></td>
</tr>
<tr>
<td>GRA4 and ROP2</td>
<td>T. gondii</td>
<td></td>
</tr>
<tr>
<td>GRA 1 and SAG 1</td>
<td>T. gondii</td>
<td></td>
</tr>
<tr>
<td>GRA7, MIC2, MIC3 & SAG1</td>
<td>T. gondii</td>
<td></td>
</tr>
</tbody>
</table>

Funding
There was no financial support for this manuscript.

References
Khalid et al

