Abstract

Background: Dirofilaria immitis is one of the most important parasites of the circulatory system of dogs that causes severe cardiovascular events in the animal and it is reported to be the most common nematode in humans and dogs from many parts of Iran.

Methods: In order to investigate the presence of Dirofilaria immitis infection in Tabriz, Iran, a cross-sectional study was performed on 200 owned and stray dogs. The blood samples were analyzed using Knott method. The prevalence of D. immitis infection was reported to be 15% in owned dogs.

Results: The highest levels of infection were reported in dogs less than one year of age and the lowest in dogs aged over 9 years. In a statistical survey, there was a significant relationship between infection and gender.

Conclusion: According to the findings of this study, due to the presence of D. immitis infection in this region, the need for a more comprehensive examination and control of the infection in this region is emphasized.

Keywords: Zoonotic importance, Dirofilaria immitis, Dog, Tabriz

Introduction

Dirofilaria immitis is a parasitic worm which resides in the cardiovascular system and is responsible for cardiopulmonary filariasis in dogs and humans. Adult worms live in the right ventricle of the heart, pulmonary artery, and posterior vena cava. In addition to dogs, foxes, coyotes, domesticated cats, minks, blue mice, sea lions, wild cats, and rarely humans host the parasites (1). The main pathogenesis of Dirofilaria immitis is attack to pulmonary arteries and induce lung lesions in human and animals. In some endemic areas in the united states, the prevalence of the disease is about 45%, and the number of infected dogs in hyperendemic areas with a tropical climate is high (2,3).

The first case of canine D. immitis infection in Iran was reported for a dog imported from America. It was believed that there was no infection in Iranian dogs, and only foreign dogs living in Iran could have this infection. However, in a study in the same year on Shahsavar stray dogs, it was revealed that 4% of these dogs have heart disease (4,5). Another study reported an incidence of 26.7% for stray dogs in Meshkinshahr (6). In another study in Tabriz, 31.6% of stray dogs in the city were found to have heartworm infection (7). In a study, it was revealed that 17.5% of dogs in Tankabon were infected (8 ). Moreover, 34.6% of dogs in Ardabil, 9.5% in Shiraz, 8.4% of shepherd dog in Tabriz, 25% in Urmia, 1.4% in Tehran, 52.41% in Gilan, 7.69% in Mazandaran, 15.38% in Golestan, 12.29% in Garmser, 5% in Kerman, 10% in Ahwaz, and 5.07% of the stray dogs in Mashhad were infected with it (9).

The present study showed that East Azarbayjan province is one of the most infected regions in Iran. Generally, the diagnosis of canine heartworm infection can be made on the basis of detecting D. immitis microfilaria in the blood sample. Additionally, molecular and serological tests (Elisa), imaging, electrocardiogram, and immunochromatography can be used for diagnosis (10). The present study aimed to survey the prevalence of D. immitis infection in dogs of Tabriz city in Iran.

Materials and Methods

This cross-sectional study was conducted during 6 months in Tabriz city, Iran, in 2017. A total of 200 dogs (100 domestic dogs and 100 guardian and domestic) were collected from 4 areas (north, south, east, and west) of Tabriz city.

Two milliliters of blood was taken from saphenous or...
cephalic veins of each dog to examine, count, and detect the microfilaria by Knott method. For this purpose, immediately after getting blood, 1 mL blood was mixed with 9 mL of formalin 2% and gently shaken to cause hemolysis. In the laboratory, blood samples were centrifuged at 1500 rpm for 3 minutes, and after discharge, methylene blue was added with a ratio of 1:1000 and a droplet of sediment was transferred to a lamella which was tested with microfiller. Then, important characteristics of tested dogs including age, gender, race, use of dogs, geographical area, and sampling date were recorded.

Dogs were divided into 6 groups of less than one year, 1-3 years old, 3-5 years old, 5-7 years old, 7-9 years old, and older than 9 years. Data were analyzed using Chi-square test and Fisher’s exact test.

Results
Blood samples were taken from 200 urban and rural dogs to detect microfilaria. The data presented in Table 1 shows that the prevalence of *Dirofilaria immitis* infection in guardian dogs is three times that of home owner dogs. The results of chi-square test showed a statistically significant difference between the two groups.

Relationship Between Filariasis and Gender
The information in Table 2 shows that the prevalence of *Dirofilaria immitis* infection in two genders was similar (200 dogs), and there was no statistically significant difference between them, while in the urban population, it was 11% higher in male dogs, which was confirmed by chi-square test.

Relationship Between Filariasis and Age
Table 3 shows that the incidence of filariasis increases with age. The rate of *Dirofilaria immitis* infection was 2% in dogs less than one year old in urban population and it was 60% in dogs older than 9 years old, indicating a statistically significant difference.

Discussion
In the present study, based on the results, microfilaria was detected in 15% of the owned dogs of Tabriz city, which is significantly different from previous reports from Tabriz (31.6%) and Meshginshahr (26.7%). In addition to the number of animals tested in different studies, the time of examination and living condition of dogs can play a part in this difference (11, 12). In the present study, the prevalence of infection in urban dogs was higher than rural dogs.

The rate of *Dirofilaria immitis* infection was higher in stray dogs, whose environmental condition was more similar to that of stray dogs, than in domestic dogs (17.5% vs. 5%). In several studies, there was a big difference between blood tests and autopsies in terms of the prevalence of *D. immitis* infection (13,14).

In a recent study on 200 dogs, the rate of heartworm infection was 45% based on blood tests, while it was 84% in the autopsy of the same animal. The difference between the two varieties of tests (39%) indicated that the infection was hidden. The lower prevalence of the heartworm infection in herding dogs may be attributed to their living environment. One of the epidemiologic factors in *D. immitis* infection is the lack of movement of dogs (15).

Some researchers showed that one of the effective factors in the epidemiology of *Dirofilaria immitis* was

<table>
<thead>
<tr>
<th>The Population of the Dogs Examined</th>
<th>Number of Dogs Under Investigation</th>
<th>Number of Infected Dogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town Guardian</td>
<td>80</td>
<td>14 (17.5%)</td>
</tr>
<tr>
<td>Town home owner</td>
<td>20</td>
<td>1 (5%)</td>
</tr>
<tr>
<td>Rural dogs (flock)</td>
<td>100</td>
<td>5 (15%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Population Under Investigation</th>
<th>Gender</th>
<th>Number of Dogs Under Investigation</th>
<th>Number of Infected Dogs</th>
<th>Infected Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Male</td>
<td>70</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Urban</td>
<td>Female</td>
<td>30</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Rural</td>
<td>Male</td>
<td>80</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Rural</td>
<td>Female</td>
<td>20</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>200</td>
<td>26</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>&lt;1</th>
<th>1-3</th>
<th>3-5</th>
<th>5-7</th>
<th>7-9</th>
<th>&gt;9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>40</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2%</td>
<td>12%</td>
<td>2%</td>
<td>26%</td>
<td>30%</td>
<td>60%</td>
</tr>
<tr>
<td>Rural</td>
<td>15</td>
<td>35</td>
<td>25</td>
<td>15</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>6%</td>
<td>3%</td>
<td>1%</td>
<td>14%</td>
</tr>
</tbody>
</table>
the place where dogs were kept, and the rate of infection in outdoor dogs was twice that of dogs kept indoors. In the present study, a significant relationship was reported between age and rate of *D. immitis* infection in urban dogs (16,17).

*Dirofilaria immitis* was found primarily in urban dogs, and in this group, the incidence of infection in dogs less than 1 year old was 2%, and it was 60% in dogs older than 9 years old. Due to the long life span of the heartworm, the prolonged presence of microfilaria in the blood and insufficient secretion of mucosa in adult dogs, there is no doubt that contact with the infected host will increase the risk of infection. The survey conducted in Meshkinshahr city had the highest rate of infection in dogs older than 10 years (56.8%) (18,19).

In a study, the rate of heartworm infection in dogs of 1-3 years of age was 6.31% and it was 56.4% in dogs of 7-11 years of age, which is consistent with the findings of the present study. In the case of gender and heartworm infection, of the 100 rural dogs investigated in this study, only 20 were female, while in urban dogs, this was significant and the infection rate was 80% in five and 80% of males, which was 5 times more than 20 females (1%).

Similar studies in the rest of the world have shown such a relationship. For example, one study showed that the rate of heartworm infection was significantly higher in male dogs (89.7%) than in female dogs (10.3%). The reason for this is the effect of sex hormones on the infection. There was a significant correlation between urban breed and *D. immitis* infection; however, it may be due to other factors in this regard, including dog shelter, health management, and the use of dogs which were not considered as risk factors (20,21).

Conflict of Interests
The authors declare that they have no conflict of interests.

Ethical Issues
In this research, ethical considerations have been fully observed.

Acknowledgements
We would like to express our deep gratitude to Islamic Azad University Tabriz Branch for offering valuable theoretical and practical assistances to the research team in the present study.

Authors' Contribution
HHF did writing and editing of the manuscript. SRB and MJE designed and did data collection. NMK designed, did data collection and statistical analysis.

Funding
The authors received no financial support for the research, authorship and publication of this article.

References